Compositional Matrix-Space Models of Language
نویسندگان
چکیده
We propose CMSMs, a novel type of generic compositional models for syntactic and semantic aspects of natural language, based on matrix multiplication. We argue for the structural and cognitive plausibility of this model and show that it is able to cover and combine various common compositional NLP approaches ranging from statistical word space models to symbolic grammar formalisms.
منابع مشابه
On the Correspondence between Compositional Matrix-Space Models of Language and Weighted Automata
Compositional matrix-space models of language were recently proposed for the task of meaning representation of complex text structures in natural language processing. These models have been shown to be a theoretically elegant way to model compositionality in natural language. However, in practical cases, appropriate methods are required to learn such models by automatically acquiring the necess...
متن کاملGradual Learning of Matrix-Space Models of Language for Sentiment Analysis
Learning word representations to capture the semantics and compositionality of language has received much research interest in natural language processing. Beyond the popular vector space models, matrix representations for words have been proposed, since then, matrix multiplication can serve as natural composition operation. In this work, we investigate the problem of learning matrix representa...
متن کاملSemantic Compositionality through Recursive Matrix-Vector Spaces
Single-word vector space models have been very successful at learning lexical information. However, they cannot capture the compositional meaning of longer phrases, preventing them from a deeper understanding of language. We introduce a recursive neural network (RNN) model that learns compositional vector representations for phrases and sentences of arbitrary syntactic type and length. Our mode...
متن کاملInteracting Conceptual Spaces I : Grammatical Composition of Concepts
The categorical compositional approach to meaning has been successfully applied in natural language processing, outperforming other models in mainstream empirical language processing tasks. We show how this approach can be generalized to conceptual space models of cognition. In order to do this, first we introduce the category of convex relations as a new setting for categorical compositional s...
متن کاملCompositional Matrix-Space Models for Sentiment Analysis
We present a general learning-based approach for phrase-level sentiment analysis that adopts an ordinal sentiment scale and is explicitly compositional in nature. Thus, we can model the compositional effects required for accurate assignment of phrase-level sentiment. For example, combining an adverb (e.g., “very”) with a positive polar adjective (e.g., “good”) produces a phrase (“very good”) wi...
متن کامل